There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(3 + x){(ln(x))}^{2} + (x - 1)(x - 1 - 5xln(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3xln^{2}(x) + x^{2}ln^{2}(x) - 5x^{2}ln(x) + 5xln(x) - 2x + x^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3xln^{2}(x) + x^{2}ln^{2}(x) - 5x^{2}ln(x) + 5xln(x) - 2x + x^{2} + 1\right)}{dx}\\=&3ln^{2}(x) + \frac{3x*2ln(x)}{(x)} + 2xln^{2}(x) + \frac{x^{2}*2ln(x)}{(x)} - 5*2xln(x) - \frac{5x^{2}}{(x)} + 5ln(x) + \frac{5x}{(x)} - 2 + 2x + 0\\=&3ln^{2}(x) + 11ln(x) + 2xln^{2}(x) - 8xln(x) - 3x + 3\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !