There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sqrt({(x - 3)}^{2} + (y - 3)*2)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} - 6x + 2y + 3)^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x^{2} - 6x + 2y + 3)^{3}\right)}{dx}\\=&\frac{3(x^{2} - 6x + 2y + 3)(2x - 6 + 0 + 0)*\frac{1}{2}}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}}\\=&\frac{3x^{3}}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}} - \frac{27x^{2}}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}} + \frac{63x}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}} + \frac{6yx}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}} - \frac{18y}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}} - \frac{27}{(x^{2} - 6x + 2y + 3)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !