There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2} + a + (x - 3){e}^{x} - (\frac{{x}^{3}}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x} + a + x^{2} - 3{e}^{x} - \frac{1}{3}x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x} + a + x^{2} - 3{e}^{x} - \frac{1}{3}x^{3}\right)}{dx}\\=&{e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0 + 2x - 3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{1}{3}*3x^{2}\\=&-2{e}^{x} + x{e}^{x} + 2x - x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !