There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 3){e}^{x} - (\frac{{x}^{3}}{3}) + {x}^{2} + a\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x} - 3{e}^{x} - \frac{1}{3}x^{3} + x^{2} + a\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x} - 3{e}^{x} - \frac{1}{3}x^{3} + x^{2} + a\right)}{dx}\\=&{e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{1}{3}*3x^{2} + 2x + 0\\=&-2{e}^{x} + x{e}^{x} - x^{2} + 2x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !