There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ btan(sin(sqrt(\frac{x}{(b + x)})))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = btan(sin(sqrt(\frac{x}{(b + x)})))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( btan(sin(sqrt(\frac{x}{(b + x)})))\right)}{dx}\\=&bsec^{2}(sin(sqrt(\frac{x}{(b + x)})))(\frac{cos(sqrt(\frac{x}{(b + x)}))((\frac{-(0 + 1)}{(b + x)^{2}})x + \frac{1}{(b + x)})*\frac{1}{2}}{(\frac{x}{(b + x)})^{\frac{1}{2}}})\\=&\frac{-bx^{\frac{1}{2}}cos(sqrt(\frac{x}{(b + x)}))sec^{2}(sin(sqrt(\frac{x}{(b + x)})))}{2(b + x)^{\frac{3}{2}}} + \frac{bcos(sqrt(\frac{x}{(b + x)}))sec^{2}(sin(sqrt(\frac{x}{(b + x)})))}{2(b + x)^{\frac{1}{2}}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !