Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 4sqrt(x) - 2sqrt(2x + x) - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4sqrt(x) - 2sqrt(2x + x) - ln(x)\right)}{dx}\\=&\frac{4*\frac{1}{2}}{(x)^{\frac{1}{2}}} - \frac{2(2 + 1)*\frac{1}{2}}{(2x + x)^{\frac{1}{2}}} - \frac{1}{(x)}\\=&\frac{2}{x^{\frac{1}{2}}} - \frac{3}{3^{\frac{1}{2}}x^{\frac{1}{2}}} - \frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{\frac{1}{2}}} - \frac{3}{3^{\frac{1}{2}}x^{\frac{1}{2}}} - \frac{1}{x}\right)}{dx}\\=&\frac{2*\frac{-1}{2}}{x^{\frac{3}{2}}} - \frac{3*\frac{-1}{2}}{3^{\frac{1}{2}}x^{\frac{3}{2}}} - \frac{-1}{x^{2}}\\=&\frac{-1}{x^{\frac{3}{2}}} + \frac{3}{2*3^{\frac{1}{2}}x^{\frac{3}{2}}} + \frac{1}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return