Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(b{x}^{2} + cx + d)}{({x}^{2} + mx + n)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{bx^{2}}{(x^{2} + mx + n)} + \frac{cx}{(x^{2} + mx + n)} + \frac{d}{(x^{2} + mx + n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{bx^{2}}{(x^{2} + mx + n)} + \frac{cx}{(x^{2} + mx + n)} + \frac{d}{(x^{2} + mx + n)}\right)}{dx}\\=&(\frac{-(2x + m + 0)}{(x^{2} + mx + n)^{2}})bx^{2} + \frac{b*2x}{(x^{2} + mx + n)} + (\frac{-(2x + m + 0)}{(x^{2} + mx + n)^{2}})cx + \frac{c}{(x^{2} + mx + n)} + (\frac{-(2x + m + 0)}{(x^{2} + mx + n)^{2}})d + 0\\=&\frac{-2bx^{3}}{(x^{2} + mx + n)^{2}} - \frac{bmx^{2}}{(x^{2} + mx + n)^{2}} + \frac{2bx}{(x^{2} + mx + n)} - \frac{2cx^{2}}{(x^{2} + mx + n)^{2}} - \frac{cmx}{(x^{2} + mx + n)^{2}} + \frac{c}{(x^{2} + mx + n)} - \frac{2dx}{(x^{2} + mx + n)^{2}} - \frac{dm}{(x^{2} + mx + n)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return