There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {10}^{(8.2969 - \frac{8.2969x}{273.16})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {10}^{(-0.0303737736125x + 8.2969)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {10}^{(-0.0303737736125x + 8.2969)}\right)}{dx}\\=&({10}^{(-0.0303737736125x + 8.2969)}((-0.0303737736125 + 0)ln(10) + \frac{(-0.0303737736125x + 8.2969)(0)}{(10)}))\\=&-0.0303737736125 * {10}^{(-0.0303737736125x + 8.2969)}ln(10)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !