Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{2})ln(sqrt(1 + {x}^{4}) - 1) - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln(sqrt(x^{4} + 1) - 1) - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln(sqrt(x^{4} + 1) - 1) - ln(x)\right)}{dx}\\=&\frac{\frac{1}{2}(\frac{(4x^{3} + 0)*\frac{1}{2}}{(x^{4} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(x^{4} + 1) - 1)} - \frac{1}{(x)}\\=&\frac{x^{3}}{(sqrt(x^{4} + 1) - 1)(x^{4} + 1)^{\frac{1}{2}}} - \frac{1}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return