There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{2})ln(sqrt(q + {x}^{4}) - 1) - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln(sqrt(q + x^{4}) - 1) - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln(sqrt(q + x^{4}) - 1) - ln(x)\right)}{dx}\\=&\frac{\frac{1}{2}(\frac{(0 + 4x^{3})*\frac{1}{2}}{(q + x^{4})^{\frac{1}{2}}} + 0)}{(sqrt(q + x^{4}) - 1)} - \frac{1}{(x)}\\=&\frac{x^{3}}{(sqrt(q + x^{4}) - 1)(q + x^{4})^{\frac{1}{2}}} - \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !