There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {5}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {5}^{x}\right)}{dx}\\=&({5}^{x}((1)ln(5) + \frac{(x)(0)}{(5)}))\\=&{5}^{x}ln(5)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {5}^{x}ln(5)\right)}{dx}\\=&({5}^{x}((1)ln(5) + \frac{(x)(0)}{(5)}))ln(5) + \frac{{5}^{x}*0}{(5)}\\=&{5}^{x}ln^{2}(5)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {5}^{x}ln^{2}(5)\right)}{dx}\\=&({5}^{x}((1)ln(5) + \frac{(x)(0)}{(5)}))ln^{2}(5) + \frac{{5}^{x}*2ln(5)*0}{(5)}\\=&{5}^{x}ln^{3}(5)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {5}^{x}ln^{3}(5)\right)}{dx}\\=&({5}^{x}((1)ln(5) + \frac{(x)(0)}{(5)}))ln^{3}(5) + \frac{{5}^{x}*3ln^{2}(5)*0}{(5)}\\=&{5}^{x}ln^{4}(5)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !