Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(1 - \frac{x}{sqrt(2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arccos(\frac{-x}{sqrt(2)} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(\frac{-x}{sqrt(2)} + 1)\right)}{dx}\\=&(\frac{-(\frac{-1}{sqrt(2)} - \frac{x*-0*\frac{1}{2}*2^{\frac{1}{2}}}{(2)} + 0)}{((1 - (\frac{-x}{sqrt(2)} + 1)^{2})^{\frac{1}{2}})})\\=&\frac{1}{(\frac{-x^{2}}{sqrt(2)^{2}} + \frac{2x}{sqrt(2)})^{\frac{1}{2}}sqrt(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return