There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{(2a)}){x}^{2} - (\frac{b}{({a}^{2})})x + \frac{({b}^{2})ln(ax + b)}{({a}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}x^{2}}{a} - \frac{bx}{a^{2}} + \frac{b^{2}ln(ax + b)}{a^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}x^{2}}{a} - \frac{bx}{a^{2}} + \frac{b^{2}ln(ax + b)}{a^{3}}\right)}{dx}\\=&\frac{\frac{1}{2}*2x}{a} - \frac{b}{a^{2}} + \frac{b^{2}(a + 0)}{a^{3}(ax + b)}\\=&\frac{x}{a} - \frac{b}{a^{2}} + \frac{b^{2}}{(ax + b)a^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !