Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of L is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{n}^{2}}{(2L)} + mLlog_{2}^{n}\ with\ respect\ to\ L:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}n^{2}}{L} + mLlog_{2}^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}n^{2}}{L} + mLlog_{2}^{n}\right)}{dL}\\=&\frac{\frac{1}{2}n^{2}*-1}{L^{2}} + mlog_{2}^{n} + mL(\frac{(\frac{(0)}{(n)} - \frac{(0)log_{2}^{n}}{(2)})}{(ln(2))})\\=&\frac{-n^{2}}{2L^{2}} + mlog_{2}^{n}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return