There are 1 questions in this calculation: for each question, the 1 derivative of L is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{n}^{2}}{(2L)} + nLlog_{2}^{n}\ with\ respect\ to\ L:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = nLlog_{2}^{n} + \frac{\frac{1}{2}n^{2}}{L}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( nLlog_{2}^{n} + \frac{\frac{1}{2}n^{2}}{L}\right)}{dL}\\=&nlog_{2}^{n} + nL(\frac{(\frac{(0)}{(n)} - \frac{(0)log_{2}^{n}}{(2)})}{(ln(2))}) + \frac{\frac{1}{2}n^{2}*-1}{L^{2}}\\=&nlog_{2}^{n} - \frac{n^{2}}{2L^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !