Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(x)}{({x}^{5} + 4{x}^{2} - 3)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{(x^{5} + 4x^{2} - 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{(x^{5} + 4x^{2} - 3)}\right)}{dx}\\=&(\frac{-(5x^{4} + 4*2x + 0)}{(x^{5} + 4x^{2} - 3)^{2}})ln(x) + \frac{1}{(x^{5} + 4x^{2} - 3)(x)}\\=&\frac{-5x^{4}ln(x)}{(x^{5} + 4x^{2} - 3)^{2}} - \frac{8xln(x)}{(x^{5} + 4x^{2} - 3)^{2}} + \frac{1}{(x^{5} + 4x^{2} - 3)x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return