Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {x}^{10}{e}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{10}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{10}{e}^{x}\right)}{dx}\\=&10x^{9}{e}^{x} + x^{10}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&10x^{9}{e}^{x} + x^{10}{e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 10x^{9}{e}^{x} + x^{10}{e}^{x}\right)}{dx}\\=&10*9x^{8}{e}^{x} + 10x^{9}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 10x^{9}{e}^{x} + x^{10}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&90x^{8}{e}^{x} + 20x^{9}{e}^{x} + x^{10}{e}^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 90x^{8}{e}^{x} + 20x^{9}{e}^{x} + x^{10}{e}^{x}\right)}{dx}\\=&90*8x^{7}{e}^{x} + 90x^{8}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 20*9x^{8}{e}^{x} + 20x^{9}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 10x^{9}{e}^{x} + x^{10}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&720x^{7}{e}^{x} + 270x^{8}{e}^{x} + 30x^{9}{e}^{x} + x^{10}{e}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return