There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} + ax + b)}{(cx + d)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(cx + d)} + \frac{ax}{(cx + d)} + \frac{b}{(cx + d)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(cx + d)} + \frac{ax}{(cx + d)} + \frac{b}{(cx + d)}\right)}{dx}\\=&(\frac{-(c + 0)}{(cx + d)^{2}})x^{2} + \frac{2x}{(cx + d)} + (\frac{-(c + 0)}{(cx + d)^{2}})ax + \frac{a}{(cx + d)} + (\frac{-(c + 0)}{(cx + d)^{2}})b + 0\\=&\frac{-cx^{2}}{(cx + d)^{2}} + \frac{2x}{(cx + d)} - \frac{acx}{(cx + d)^{2}} + \frac{a}{(cx + d)} - \frac{bc}{(cx + d)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !