Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan(a)qrt({x}^{2} - \frac{ln(x + aqrt({x}^{2} - 1))}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = qrtx^{2}arctan(a) - \frac{qrtln(x + aqrtx^{2} - aqrt)arctan(a)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( qrtx^{2}arctan(a) - \frac{qrtln(x + aqrtx^{2} - aqrt)arctan(a)}{x}\right)}{dx}\\=&qrt*2xarctan(a) + qrtx^{2}(\frac{(0)}{(1 + (a)^{2})}) - \frac{qrt*-ln(x + aqrtx^{2} - aqrt)arctan(a)}{x^{2}} - \frac{qrt(1 + aqrt*2x + 0)arctan(a)}{x(x + aqrtx^{2} - aqrt)} - \frac{qrtln(x + aqrtx^{2} - aqrt)(\frac{(0)}{(1 + (a)^{2})})}{x}\\=&2qrtxarctan(a) - \frac{qrtarctan(a)}{(x + aqrtx^{2} - aqrt)x} + \frac{qrtln(x + aqrtx^{2} - aqrt)arctan(a)}{x^{2}} - \frac{2aq^{2}r^{2}t^{2}arctan(a)}{(x + aqrtx^{2} - aqrt)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return