Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (\frac{2}{π})arctan({x}^{q})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2arctan({x}^{q})}{π}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2arctan({x}^{q})}{π}\right)}{dx}\\=&\frac{2(\frac{(({x}^{q}((0)ln(x) + \frac{(q)(1)}{(x)})))}{(1 + ({x}^{q})^{2})})}{π}\\=&\frac{2q{x}^{q}}{({x}^{(2q)} + 1)πx}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2q{x}^{q}}{({x}^{(2q)} + 1)πx}\right)}{dx}\\=&\frac{2(\frac{-(({x}^{(2q)}((0)ln(x) + \frac{(2q)(1)}{(x)})) + 0)}{({x}^{(2q)} + 1)^{2}})q{x}^{q}}{πx} + \frac{2q*-{x}^{q}}{({x}^{(2q)} + 1)πx^{2}} + \frac{2q({x}^{q}((0)ln(x) + \frac{(q)(1)}{(x)}))}{({x}^{(2q)} + 1)πx}\\=&\frac{-4q^{2}{x}^{(3q)}}{({x}^{(2q)} + 1)^{2}πx^{2}} - \frac{2q{x}^{q}}{({x}^{(2q)} + 1)πx^{2}} + \frac{2q^{2}{x}^{q}}{({x}^{(2q)} + 1)πx^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return