Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {sin(o)}^{{cos(o)}^{tan(o)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sin(o)}^{{cos(o)}^{tan(o)}}\right)}{dx}\\=&({sin(o)}^{{cos(o)}^{tan(o)}}((({cos(o)}^{tan(o)}((sec^{2}(o)(0))ln(cos(o)) + \frac{(tan(o))(-sin(o)*0)}{(cos(o))})))ln(sin(o)) + \frac{({cos(o)}^{tan(o)})(cos(o)*0)}{(sin(o))}))\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return