Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{-15600}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{x^{15600}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{x^{15600}}\right)}{dx}\\=&\frac{-15600}{x^{15601}}\\=&\frac{-15600}{x^{15601}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-15600}{x^{15601}}\right)}{dx}\\=&\frac{-15600*-15601}{x^{15602}}\\=&\frac{243375600}{x^{15602}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{243375600}{x^{15602}}\right)}{dx}\\=&\frac{243375600*-15602}{x^{15603}}\\=&\frac{-3797146111200}{x^{15603}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3797146111200}{x^{15603}}\right)}{dx}\\=&\frac{-3797146111200*-15603}{x^{15604}}\\=&\frac{59246870773053600}{x^{15604}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return