Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(xcos(s))}{sin({x}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xcos(s)}{sin(x^{3})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xcos(s)}{sin(x^{3})}\right)}{dx}\\=&\frac{cos(s)}{sin(x^{3})} + \frac{x*-cos(x^{3})*3x^{2}cos(s)}{sin^{2}(x^{3})} + \frac{x*-sin(s)*0}{sin(x^{3})}\\=&\frac{cos(s)}{sin(x^{3})} - \frac{3x^{3}cos(x^{3})cos(s)}{sin^{2}(x^{3})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return