There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 3{x}^{(x - 1)} - bxln(x) - 2ax - a\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3{x}^{(x - 1)} - bxln(x) - 2ax - a\right)}{dx}\\=&3({x}^{(x - 1)}((1 + 0)ln(x) + \frac{(x - 1)(1)}{(x)})) - bln(x) - \frac{bx}{(x)} - 2a + 0\\=&3{x}^{(x - 1)}ln(x) + 3{x}^{(x - 1)} - \frac{3{x}^{(x - 1)}}{x} - bln(x) - b - 2a\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3{x}^{(x - 1)}ln(x) + 3{x}^{(x - 1)} - \frac{3{x}^{(x - 1)}}{x} - bln(x) - b - 2a\right)}{dx}\\=&3({x}^{(x - 1)}((1 + 0)ln(x) + \frac{(x - 1)(1)}{(x)}))ln(x) + \frac{3{x}^{(x - 1)}}{(x)} + 3({x}^{(x - 1)}((1 + 0)ln(x) + \frac{(x - 1)(1)}{(x)})) - \frac{3*-{x}^{(x - 1)}}{x^{2}} - \frac{3({x}^{(x - 1)}((1 + 0)ln(x) + \frac{(x - 1)(1)}{(x)}))}{x} - \frac{b}{(x)} + 0 + 0\\=&3{x}^{(x - 1)}ln^{2}(x) + 6{x}^{(x - 1)}ln(x) - \frac{6{x}^{(x - 1)}ln(x)}{x} - \frac{3{x}^{(x - 1)}}{x} + 3{x}^{(x - 1)} + \frac{6{x}^{(x - 1)}}{x^{2}} - \frac{b}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !