There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(-22{x}^{2} + 46x - 20)a}{(41{x}^{2} - 94x + 48)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-22ax^{2}}{(41x^{2} - 94x + 48)} + \frac{46ax}{(41x^{2} - 94x + 48)} - \frac{20a}{(41x^{2} - 94x + 48)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-22ax^{2}}{(41x^{2} - 94x + 48)} + \frac{46ax}{(41x^{2} - 94x + 48)} - \frac{20a}{(41x^{2} - 94x + 48)}\right)}{dx}\\=&-22(\frac{-(41*2x - 94 + 0)}{(41x^{2} - 94x + 48)^{2}})ax^{2} - \frac{22a*2x}{(41x^{2} - 94x + 48)} + 46(\frac{-(41*2x - 94 + 0)}{(41x^{2} - 94x + 48)^{2}})ax + \frac{46a}{(41x^{2} - 94x + 48)} - 20(\frac{-(41*2x - 94 + 0)}{(41x^{2} - 94x + 48)^{2}})a + 0\\=&\frac{1804ax^{3}}{(41x^{2} - 94x + 48)^{2}} - \frac{5840ax^{2}}{(41x^{2} - 94x + 48)^{2}} - \frac{44ax}{(41x^{2} - 94x + 48)} + \frac{5964ax}{(41x^{2} - 94x + 48)^{2}} + \frac{46a}{(41x^{2} - 94x + 48)} - \frac{1880a}{(41x^{2} - 94x + 48)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !