There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {{x}^{15600}}^{2} + 2{x}^{5000}({x}^{3000})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{8000} + x^{31200}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{8000} + x^{31200}\right)}{dx}\\=&2*8000x^{7999} + 31200x^{31199}\\=&16000x^{7999} + 31200x^{31199}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 16000x^{7999} + 31200x^{31199}\right)}{dx}\\=&16000*7999x^{7998} + 31200*31199x^{31198}\\=&127984000x^{7998} + 973408800x^{31198}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 127984000x^{7998} + 973408800x^{31198}\right)}{dx}\\=&127984000*7998x^{7997} + 973408800*31198x^{31197}\\=&1023616032000x^{7997} + 30368407742400x^{31197}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 1023616032000x^{7997} + 30368407742400x^{31197}\right)}{dx}\\=&1023616032000*7997x^{7996} + 30368407742400*31197x^{31196}\\=&8185857407904000x^{7996} + 947403216339652800x^{31196}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !