There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2arcsin(\frac{Lx}{2})x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2xarcsin(\frac{1}{2}Lx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2xarcsin(\frac{1}{2}Lx)\right)}{dx}\\=&2arcsin(\frac{1}{2}Lx) + 2x(\frac{(\frac{1}{2}L)}{((1 - (\frac{1}{2}Lx)^{2})^{\frac{1}{2}})})\\=&2arcsin(\frac{1}{2}Lx) + \frac{Lx}{(\frac{-1}{4}L^{2}x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !