There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{156} + 2x({x}^{3000})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3001} + x^{156}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3001} + x^{156}\right)}{dx}\\=&2*3001x^{3000} + 156x^{155}\\=&6002x^{3000} + 156x^{155}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6002x^{3000} + 156x^{155}\right)}{dx}\\=&6002*3000x^{2999} + 156*155x^{154}\\=&18006000x^{2999} + 24180x^{154}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 18006000x^{2999} + 24180x^{154}\right)}{dx}\\=&18006000*2999x^{2998} + 24180*154x^{153}\\=&53999994000x^{2998} + 3723720x^{153}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 53999994000x^{2998} + 3723720x^{153}\right)}{dx}\\=&53999994000*2998x^{2997} + 3723720*153x^{152}\\=&161891982012000x^{2997} + 569729160x^{152}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !