There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{156} + 2x({x}^{300})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{301} + x^{156}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{301} + x^{156}\right)}{dx}\\=&2*301x^{300} + 156x^{155}\\=&602x^{300} + 156x^{155}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 602x^{300} + 156x^{155}\right)}{dx}\\=&602*300x^{299} + 156*155x^{154}\\=&180600x^{299} + 24180x^{154}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 180600x^{299} + 24180x^{154}\right)}{dx}\\=&180600*299x^{298} + 24180*154x^{153}\\=&53999400x^{298} + 3723720x^{153}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 53999400x^{298} + 3723720x^{153}\right)}{dx}\\=&53999400*298x^{297} + 3723720*153x^{152}\\=&16091821200x^{297} + 569729160x^{152}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !