There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 60sin(x){\frac{1}{(169 - 120cos(x))}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{60sin(x)}{(-120cos(x) + 169)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{60sin(x)}{(-120cos(x) + 169)^{\frac{1}{2}}}\right)}{dx}\\=&60(\frac{\frac{-1}{2}(-120*-sin(x) + 0)}{(-120cos(x) + 169)^{\frac{3}{2}}})sin(x) + \frac{60cos(x)}{(-120cos(x) + 169)^{\frac{1}{2}}}\\=&\frac{-3600sin^{2}(x)}{(-120cos(x) + 169)^{\frac{3}{2}}} + \frac{60cos(x)}{(-120cos(x) + 169)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !