There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -rwsin(wx) - r*2wsin(wx)cos(wx)(-r*2sin(2)(wx)l*2 + 1)*12l\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -rwsin(wx) + 96r^{2}w^{2}l^{2}xsin(wx)sin(2)cos(wx) - 24rwlsin(wx)cos(wx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -rwsin(wx) + 96r^{2}w^{2}l^{2}xsin(wx)sin(2)cos(wx) - 24rwlsin(wx)cos(wx)\right)}{dx}\\=&-rwcos(wx)w + 96r^{2}w^{2}l^{2}sin(wx)sin(2)cos(wx) + 96r^{2}w^{2}l^{2}xcos(wx)wsin(2)cos(wx) + 96r^{2}w^{2}l^{2}xsin(wx)cos(2)*0cos(wx) + 96r^{2}w^{2}l^{2}xsin(wx)sin(2)*-sin(wx)w - 24rwlcos(wx)wcos(wx) - 24rwlsin(wx)*-sin(wx)w\\=&-rw^{2}cos(wx) + 96r^{2}w^{2}l^{2}sin(wx)sin(2)cos(wx) + 96r^{2}w^{3}l^{2}xsin(2)cos^{2}(wx) - 96r^{2}w^{3}l^{2}xsin^{2}(wx)sin(2) - 24rw^{2}lcos^{2}(wx) + 24rw^{2}lsin^{2}(wx)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !