There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(11{x}^{2} - 15x + 6)}{(x - 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{11x^{2}}{(x - 2)} - \frac{15x}{(x - 2)} + \frac{6}{(x - 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{11x^{2}}{(x - 2)} - \frac{15x}{(x - 2)} + \frac{6}{(x - 2)}\right)}{dx}\\=&11(\frac{-(1 + 0)}{(x - 2)^{2}})x^{2} + \frac{11*2x}{(x - 2)} - 15(\frac{-(1 + 0)}{(x - 2)^{2}})x - \frac{15}{(x - 2)} + 6(\frac{-(1 + 0)}{(x - 2)^{2}})\\=&\frac{-11x^{2}}{(x - 2)^{2}} + \frac{22x}{(x - 2)} + \frac{15x}{(x - 2)^{2}} - \frac{6}{(x - 2)^{2}} - \frac{15}{(x - 2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-11x^{2}}{(x - 2)^{2}} + \frac{22x}{(x - 2)} + \frac{15x}{(x - 2)^{2}} - \frac{6}{(x - 2)^{2}} - \frac{15}{(x - 2)}\right)}{dx}\\=&-11(\frac{-2(1 + 0)}{(x - 2)^{3}})x^{2} - \frac{11*2x}{(x - 2)^{2}} + 22(\frac{-(1 + 0)}{(x - 2)^{2}})x + \frac{22}{(x - 2)} + 15(\frac{-2(1 + 0)}{(x - 2)^{3}})x + \frac{15}{(x - 2)^{2}} - 6(\frac{-2(1 + 0)}{(x - 2)^{3}}) - 15(\frac{-(1 + 0)}{(x - 2)^{2}})\\=&\frac{22x^{2}}{(x - 2)^{3}} - \frac{44x}{(x - 2)^{2}} - \frac{30x}{(x - 2)^{3}} + \frac{12}{(x - 2)^{3}} + \frac{30}{(x - 2)^{2}} + \frac{22}{(x - 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !