There are 1 questions in this calculation: for each question, the 1 derivative of T is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{z}{(z - {e}^{(sT)})}\ with\ respect\ to\ T:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z}{(z - {e}^{(sT)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z}{(z - {e}^{(sT)})}\right)}{dT}\\=&(\frac{-(0 - ({e}^{(sT)}((s)ln(e) + \frac{(sT)(0)}{(e)})))}{(z - {e}^{(sT)})^{2}})z + 0\\=&\frac{zs{e}^{(sT)}}{(z - {e}^{(sT)})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !