Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of T is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{z}{(z - e^{s}T)}\ with\ respect\ to\ T:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{z}{(z - Te^{s})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{z}{(z - Te^{s})}\right)}{dT}\\=&(\frac{-(0 - e^{s} - Te^{s}*0)}{(z - Te^{s})^{2}})z + 0\\=&\frac{ze^{s}}{(z - Te^{s})^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{ze^{s}}{(z - Te^{s})^{2}}\right)}{dT}\\=&(\frac{-2(0 - e^{s} - Te^{s}*0)}{(z - Te^{s})^{3}})ze^{s} + \frac{ze^{s}*0}{(z - Te^{s})^{2}}\\=&\frac{2ze^{{s}*{2}}}{(z - Te^{s})^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return