Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{(\frac{2}{3})} + \frac{9}{10}sqrt(8 - {x}^{2})sin(aπx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{2}{3}} + \frac{9}{10}sin(aπx)sqrt(-x^{2} + 8)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{2}{3}} + \frac{9}{10}sin(aπx)sqrt(-x^{2} + 8)\right)}{dx}\\=&\frac{\frac{2}{3}}{x^{\frac{1}{3}}} + \frac{9}{10}cos(aπx)aπsqrt(-x^{2} + 8) + \frac{\frac{9}{10}sin(aπx)(-2x + 0)*\frac{1}{2}}{(-x^{2} + 8)^{\frac{1}{2}}}\\=&\frac{2}{3x^{\frac{1}{3}}} + \frac{9aπcos(aπx)sqrt(-x^{2} + 8)}{10} - \frac{9xsin(aπx)}{10(-x^{2} + 8)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return