Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (sin(x)){\frac{1}{({50}^{2} + {120}^{2} - 2*50*120cos(x))}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(x)}{(-12000cos(x) + 28900)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(x)}{(-12000cos(x) + 28900)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-12000*-sin(x) + 0)}{(-12000cos(x) + 28900)^{\frac{3}{2}}})sin(x) + \frac{cos(x)}{(-12000cos(x) + 28900)^{\frac{1}{2}}}\\=&\frac{-6000sin^{2}(x)}{(-12000cos(x) + 28900)^{\frac{3}{2}}} + \frac{cos(x)}{(-12000cos(x) + 28900)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return