There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ π(π - x)(π + 5x)π(5 - x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - π^{4}x + 20π^{3}x - 4π^{3}x^{2} - 25π^{2}x^{2} + 5π^{2}x^{3} + 5π^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - π^{4}x + 20π^{3}x - 4π^{3}x^{2} - 25π^{2}x^{2} + 5π^{2}x^{3} + 5π^{4}\right)}{dx}\\=& - π^{4} + 20π^{3} - 4π^{3}*2x - 25π^{2}*2x + 5π^{2}*3x^{2} + 0\\=& - 8π^{3}x - 50π^{2}x + 15π^{2}x^{2} + 20π^{3} - π^{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !