There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(sin(cos(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sin(cos(x)))\right)}{dx}\\=&\frac{cos(cos(x))*-sin(x)}{(sin(cos(x)))}\\=&\frac{-sin(x)cos(cos(x))}{sin(cos(x))}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(x)cos(cos(x))}{sin(cos(x))}\right)}{dx}\\=&\frac{-cos(x)cos(cos(x))}{sin(cos(x))} - \frac{sin(x)*-cos(cos(x))*-sin(x)cos(cos(x))}{sin^{2}(cos(x))} - \frac{sin(x)*-sin(cos(x))*-sin(x)}{sin(cos(x))}\\=&\frac{-cos(x)cos(cos(x))}{sin(cos(x))} - \frac{sin^{2}(x)cos^{2}(cos(x))}{sin^{2}(cos(x))} - sin^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !