Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{lim(sqrt(9 - x) - 3)x}{sin(2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{limxsqrt(-x + 9)}{sin(2)} - \frac{3limx}{sin(2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{limxsqrt(-x + 9)}{sin(2)} - \frac{3limx}{sin(2)}\right)}{dx}\\=&\frac{limsqrt(-x + 9)}{sin(2)} + \frac{limx*-cos(2)*0sqrt(-x + 9)}{sin^{2}(2)} + \frac{limx(-1 + 0)*\frac{1}{2}}{sin(2)(-x + 9)^{\frac{1}{2}}} - \frac{3lim}{sin(2)} - \frac{3limx*-cos(2)*0}{sin^{2}(2)}\\=&\frac{limsqrt(-x + 9)}{sin(2)} - \frac{limx}{2(-x + 9)^{\frac{1}{2}}sin(2)} - \frac{3lim}{sin(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return