There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{y}(ysin(x) - xcos(x))}{({x}^{2} + {y}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{y{e}^{y}sin(x)}{(x^{2} + y^{2})} - \frac{x{e}^{y}cos(x)}{(x^{2} + y^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{y{e}^{y}sin(x)}{(x^{2} + y^{2})} - \frac{x{e}^{y}cos(x)}{(x^{2} + y^{2})}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}})y{e}^{y}sin(x) + \frac{y({e}^{y}((0)ln(e) + \frac{(y)(0)}{(e)}))sin(x)}{(x^{2} + y^{2})} + \frac{y{e}^{y}cos(x)}{(x^{2} + y^{2})} - (\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}})x{e}^{y}cos(x) - \frac{{e}^{y}cos(x)}{(x^{2} + y^{2})} - \frac{x({e}^{y}((0)ln(e) + \frac{(y)(0)}{(e)}))cos(x)}{(x^{2} + y^{2})} - \frac{x{e}^{y}*-sin(x)}{(x^{2} + y^{2})}\\=&\frac{-2yx{e}^{y}sin(x)}{(x^{2} + y^{2})^{2}} + \frac{y{e}^{y}cos(x)}{(x^{2} + y^{2})} + \frac{2x^{2}{e}^{y}cos(x)}{(x^{2} + y^{2})^{2}} - \frac{{e}^{y}cos(x)}{(x^{2} + y^{2})} + \frac{x{e}^{y}sin(x)}{(x^{2} + y^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !