There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{3}{2}sin(\frac{5}{2}x + 3)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3}{2}sin(\frac{5}{2}x + 3)\right)}{dx}\\=&\frac{3}{2}cos(\frac{5}{2}x + 3)(\frac{5}{2} + 0)\\=&\frac{15cos(\frac{5}{2}x + 3)}{4}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{15cos(\frac{5}{2}x + 3)}{4}\right)}{dx}\\=&\frac{15*-sin(\frac{5}{2}x + 3)(\frac{5}{2} + 0)}{4}\\=&\frac{-75sin(\frac{5}{2}x + 3)}{8}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !