There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ arcsin(0.00687(200(x - 1600)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(1.374x - 2198.4)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(1.374x - 2198.4)\right)}{dx}\\=&(\frac{(1.374 + 0)}{((1 - (1.374x - 2198.4)^{2})^{\frac{1}{2}})})\\=&\frac{1.374}{(-1.887876x^{2} + 3020.6016x + 3020.6016x - 4832961.56)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1.374}{(-1.887876x^{2} + 3020.6016x + 3020.6016x - 4832961.56)^{\frac{1}{2}}}\right)}{dx}\\=&1.374(\frac{-0.5(-1.887876*2x + 3020.6016 + 3020.6016 + 0)}{(-1.887876x^{2} + 3020.6016x + 3020.6016x - 4832961.56)^{\frac{3}{2}}})\\=&\frac{2.593941624x}{(-1.887876x^{2} + 3020.6016x + 3020.6016x - 4832961.56)^{\frac{3}{2}}} - \frac{4150.3065984}{(-1.887876x^{2} + 3020.6016x + 3020.6016x - 4832961.56)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !