There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ In(sin(\frac{{e}^{x}}{x}))sin(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Inxsin(2)sin(\frac{{e}^{x}}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Inxsin(2)sin(\frac{{e}^{x}}{x})\right)}{dx}\\=&Insin(2)sin(\frac{{e}^{x}}{x}) + Inxcos(2)*0sin(\frac{{e}^{x}}{x}) + Inxsin(2)cos(\frac{{e}^{x}}{x})(\frac{-{e}^{x}}{x^{2}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x})\\=&Insin(2)sin(\frac{{e}^{x}}{x}) - \frac{In{e}^{x}sin(2)cos(\frac{{e}^{x}}{x})}{x} + In{e}^{x}sin(2)cos(\frac{{e}^{x}}{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !