There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{{(\frac{-1}{x})}^{n}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(\frac{-1}{x})^{n}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{-1}{x})^{n}}\right)}{dx}\\=&({e}^{(\frac{-1}{x})^{n}}((((\frac{-1}{x})^{n}((0)ln(\frac{-1}{x}) + \frac{(n)(\frac{--1}{x^{2}})}{(\frac{-1}{x})})))ln(e) + \frac{((\frac{-1}{x})^{n})(0)}{(e)}))\\=&\frac{-n(\frac{-1}{x})^{n}{e}^{(\frac{-1}{x})^{n}}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !