Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{5.8x}{(sqrt(xx - 2.25) + 0.87)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{5.8x}{(sqrt(x^{2} - 2.25) + 0.87)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{5.8x}{(sqrt(x^{2} - 2.25) + 0.87)}\right)}{dx}\\=&5.8(\frac{-(\frac{(2x + 0)*0.5}{(x^{2} - 2.25)^{\frac{1}{2}}} + 0)}{(sqrt(x^{2} - 2.25) + 0.87)^{2}})x + \frac{5.8}{(sqrt(x^{2} - 2.25) + 0.87)}\\=&\frac{-5.8x^{2}}{(sqrt(x^{2} - 2.25) + 0.87)(sqrt(x^{2} - 2.25) + 0.87)(x^{2} - 2.25)^{\frac{1}{2}}} + \frac{5.8}{(sqrt(x^{2} - 2.25) + 0.87)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return