There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt((\frac{gxa}{2})th(\frac{2ah}{x}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{1}{2}gaxth(\frac{2ah}{x}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{1}{2}gaxth(\frac{2ah}{x}))\right)}{dx}\\=&\frac{(\frac{1}{2}gath(\frac{2ah}{x}) + \frac{\frac{1}{2}gax(1 - th^{2}(\frac{2ah}{x}))*2ah*-1}{x^{2}})*\frac{1}{2}}{(\frac{1}{2}gaxth(\frac{2ah}{x}))^{\frac{1}{2}}}\\=&\frac{2^{\frac{1}{2}}g^{\frac{1}{2}}a^{\frac{1}{2}}th^{\frac{1}{2}}(\frac{2ah}{x})}{4x^{\frac{1}{2}}} - \frac{2^{\frac{1}{2}}g^{\frac{1}{2}}a^{\frac{3}{2}}h}{2x^{\frac{3}{2}}th^{\frac{1}{2}}(\frac{2ah}{x})} + \frac{2^{\frac{1}{2}}g^{\frac{1}{2}}a^{\frac{3}{2}}hth^{\frac{3}{2}}(\frac{2ah}{x})}{2x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !