There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{e}^{(\frac{x}{2})} + \frac{6m}{(5x)} - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{(\frac{1}{2}x)} + \frac{\frac{6}{5}m}{x} - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{(\frac{1}{2}x)} + \frac{\frac{6}{5}m}{x} - 2\right)}{dx}\\=&{e}^{(\frac{1}{2}x)} + x({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)})) + \frac{\frac{6}{5}m*-1}{x^{2}} + 0\\=&{e}^{(\frac{1}{2}x)} + \frac{x{e}^{(\frac{1}{2}x)}}{2} - \frac{6m}{5x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !