There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(1 + sin(3){x}^{2})}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{8}sin^{4}(3) + 4x^{6}sin^{3}(3) + 6x^{4}sin^{2}(3) + 4x^{2}sin(3) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{8}sin^{4}(3) + 4x^{6}sin^{3}(3) + 6x^{4}sin^{2}(3) + 4x^{2}sin(3) + 1\right)}{dx}\\=&8x^{7}sin^{4}(3) + x^{8}*4sin^{3}(3)cos(3)*0 + 4*6x^{5}sin^{3}(3) + 4x^{6}*3sin^{2}(3)cos(3)*0 + 6*4x^{3}sin^{2}(3) + 6x^{4}*2sin(3)cos(3)*0 + 4*2xsin(3) + 4x^{2}cos(3)*0 + 0\\=&8x^{7}sin^{4}(3) + 24x^{5}sin^{3}(3) + 24x^{3}sin^{2}(3) + 8xsin(3)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 8x^{7}sin^{4}(3) + 24x^{5}sin^{3}(3) + 24x^{3}sin^{2}(3) + 8xsin(3)\right)}{dx}\\=&8*7x^{6}sin^{4}(3) + 8x^{7}*4sin^{3}(3)cos(3)*0 + 24*5x^{4}sin^{3}(3) + 24x^{5}*3sin^{2}(3)cos(3)*0 + 24*3x^{2}sin^{2}(3) + 24x^{3}*2sin(3)cos(3)*0 + 8sin(3) + 8xcos(3)*0\\=&56x^{6}sin^{4}(3) + 120x^{4}sin^{3}(3) + 72x^{2}sin^{2}(3) + 8sin(3)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !