Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({x}^{2})cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}cos(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}cos(x)\right)}{dx}\\=&2xcos(x) + x^{2}*-sin(x)\\=&2xcos(x) - x^{2}sin(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xcos(x) - x^{2}sin(x)\right)}{dx}\\=&2cos(x) + 2x*-sin(x) - 2xsin(x) - x^{2}cos(x)\\=&2cos(x) - 4xsin(x) - x^{2}cos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2cos(x) - 4xsin(x) - x^{2}cos(x)\right)}{dx}\\=&2*-sin(x) - 4sin(x) - 4xcos(x) - 2xcos(x) - x^{2}*-sin(x)\\=&-6sin(x) - 6xcos(x) + x^{2}sin(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -6sin(x) - 6xcos(x) + x^{2}sin(x)\right)}{dx}\\=&-6cos(x) - 6cos(x) - 6x*-sin(x) + 2xsin(x) + x^{2}cos(x)\\=&-12cos(x) + 8xsin(x) + x^{2}cos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return