There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2{x}^{2} - 2x + 5)}^{\frac{1}{2}} + {(2{x}^{2} - 8x + 10)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (2x^{2} - 2x + 5)^{\frac{1}{2}} + (2x^{2} - 8x + 10)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (2x^{2} - 2x + 5)^{\frac{1}{2}} + (2x^{2} - 8x + 10)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(2*2x - 2 + 0)}{(2x^{2} - 2x + 5)^{\frac{1}{2}}}) + (\frac{\frac{1}{2}(2*2x - 8 + 0)}{(2x^{2} - 8x + 10)^{\frac{1}{2}}})\\=&\frac{2x}{(2x^{2} - 2x + 5)^{\frac{1}{2}}} + \frac{2x}{(2x^{2} - 8x + 10)^{\frac{1}{2}}} - \frac{1}{(2x^{2} - 2x + 5)^{\frac{1}{2}}} - \frac{4}{(2x^{2} - 8x + 10)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !